Robot boat sails into history by finishing Atlantic crossing
Robot boat sails into history by finishing Atlantic crossing In this photo taken on March 14, 2018 and provided by Offshore Sensing, an autonomous Sailbuoy operated by Norwegian company Offshore Sensing performs a demonstration in the waters of Bjornafjorden, near Bergen, Norway. (Anders Barholm Larsen/Offshore Sensing via AP/AP Photo/Kelvin Chan)
Robot boat sails into history by finishing Atlantic crossing
Lexile: 1140L

Assign to Google Classroom

All summer, the small boat drifted steadily eastward across the churning North Atlantic. It drifted until it neared the Irish coast. It made history by becoming the first unmanned sailboat to cross the Atlantic.

It is called SB Met and was built by Norwegian company Offshore Sensing AS. It reached the finish line of the Microtransat Challenge for robotic boats on Aug. 26. According to preliminary data, it finished two and a half months after setting off from Newfoundland. 

It's a milestone that shows the technology for unmanned boats is robust enough to carry out extended missions. Such missions can dramatically cut costs for ocean research, border security, and surveillance in rough or remote waters. They're part of wider efforts to develop autonomous marine vessels. Such vessels include robotic ferries and cargo and container ships that could be operating by the end of the decade. This could outpace attempts to commercialize self-driving cars.

"We've proved that it's possible to do,” said David Peddie, CEO of Offshore Sensing. It created the oceangoing drones, known as Sailbuoys. "The North Atlantic is one of the toughest areas to cross." Completing the challenge "really proves that it's a long endurance vehicle for pretty much any condition the sea can throw at you," he said.

Boats up to 2.4 meters (2.6 yards) long can sail between Europe and the Caribbean or North America and Ireland under Microtransat's rules. They must regularly transmit location data.

The Sailbuoy competed in the "unmanned" class. It allows operators to change its course along the way. There's a separate "autonomous" class that prohibits any such communication.

Autonomous boats face storms that bring fierce gales and high waves. They also face numerous seaborne hazards. In contrast, self-driving cars have to contend with pedestrians and other traffic.

The Microtransat began in 2010. More than 20 previous attempts by various teams to complete have ended in failure. According to the race website, robot boats got caught in fishing nets, retrieved by ships, or lost. Peddie said his biggest fear was that a passing boat would pick up the two-meter, 60 kilogram (130 pound) vessel as it neared the finish.

The company is in a niche field with few other players. U.S. startup Saildrone is building a fleet of seven-meter "unmanned surface vehicles." They can spend up to 12 months gathering ocean data. Liquid Robotics, owned by Boeing, makes the Wave Glider, a research platform that uses wave rather than wind power for propulsion.

Bigger unmanned ships are coming, too. The International Maritime Organization is reviewing the safety, security and environmental implications.

Offshore Sensing has built 14 Sailbuoys. They have a surfboard-shaped deck covered in solar panels that power the onboard technology. A rigid trapezoidal sail mounted near the bow propels the vessel. In company videos, it looks like a toy tossed about by waves and passing ships, making its achievement all the more unlikely.

Peddie says robotic sailboats offer important advantages. Unlike drifting buoys, they can loiter in one place, and they're nimbler and cheaper than research vessels.

"These vehicles can do stuff which you cannot do with a traditional vehicle, especially in dangerous areas," such as a hurricane's path, Peddie said.

Sailbuoys can be fitted with sensors to measure waves, ocean salinity and oxygen levels. They can be fitted with echo sounders to look for fish eggs and larvae, or transmitters to communicate with undersea equipment. They sell for about 150,000 euros ($175,000), similar to the cost of renting a research vessel for a few days.

"The great advantage is that you can collect an awful lot of data for very low cost," Peddie said.

A spinoff contest, the annual World Robot Sailing Championship held late Aug. in the English port city of Southampton, also showcased robotic sailing technology.

Teams from British, French, Finnish and Chinese universities put their machines to the test in a series of challenges. These included collision avoidance and area scanning, in which vessels have to cover as much of an area as possible.

Self-sailing boats operate on similar principles to self-driving cars. They use sensors to scan their surroundings and feed the data to an artificial intelligence system that gives instructions to the vehicle.

A team from France's ENSTA Bretagne graduate engineering research institute dominated the first challenge, a race around a triangle-shaped course, with their sleek, angular fluorescent-green carbon fiber boat. Servo winches controlled the two transparent plastic sails and the rudder as wind, GPS and compass sensors fed readings to an onboard computer.

Others didn't fare so well. One of the two Chinese teams couldn't stop their boat from being pushed way off course by the strong tide.

"Other ships are thin and long. Ours is too wide and fat," said Hou Chunxiao of the Shanghai Jiaotong University team, a joint collaboration between students and staff from a maritime company run by their thesis supervisor.

Smaller and lighter electronics, better solar panels, 3D printing and other technological advances are making it easier to build self-sailing boats, competitors said.

"We talk more about autonomous cars or drones, but sailboats are also a big thing," said Ulysse Vautier, of the Plymouth University team. "There's so much to discover on the ocean. With the environmental and ecological problems we face today," autonomous sailing boats are an energy-efficient way to do ocean research, Vautier said, adding that future uses could include swarms of sailing drones scanning the sea floor for the missing Malaysian Airlines flight MH370.

And there will be new variations of the contest to come.

Now, Sauze said, "the challenge is to do it faster, cheaper and do it with a smaller boat."

Source URL:

Filed Under:  
Assigned 61 times
Could there be robotic airplanes?
Write your answers in the comments section below

  • nathanr-orv
    9/24/2018 - 11:45 a.m.

    That is really cool a robotic boat sailing across the sea. There could be robotic airplanes with our technology. There are already self driving cars.

  • GabeA-lam
    10/26/2018 - 01:38 p.m.

    I have never heard of self driving boats but they sound very cool and I think they could help us a lot with ocean exploration. This piece has made me interested in self driving boats and I would like to learn more about them.

  • laneyA-dec
    11/07/2018 - 09:53 a.m.

    I think there could be robotic airplanes one day. Because they have the technology and stuff to be able to do that. This is why I think that there could be robotic airplanes.

Take the Quiz Leave a comment