This is how bats can land upside down How do bats land upside down? (Daniel Gerd Poelsler/imageBROKER/Corbis/Wisconsin Department of Natural Resources via AP, File)
This is how bats can land upside down
Lexile

When you think of a bat, chances are you're imagining it hanging upside down, hanging from a tree branch or a cave ceiling. Now, scientists have figured out how bats effortlessly pull off this stunt. That is according to a study was published in PLOS Biology.
 
"Bats land in a unique way," Brown University biologist Sharon Swartz, said in a statement. "They have to go from flying with their heads forward to executing an acrobatic maneuver that puts them head down and feet up. No other flying animal lands the same way as bats do."
 
Relative to their body weight, bats have some of the heaviest wings in the animal kingdom, which seems like it would increase the difficulty of these gymnastic feats.
 
Bats also have to deal with having solid bones. This is unlike birds. The bones and joints of birds are hollow. But instead of being kept down by their weight, bats use their relatively heavy bodies to their advantage. They fling their bodies around. It is similar to how skateboarders and figure skaters pull off kick flips and pirouettes. This is according to Nsikan Akpan for the PBS Newshour.
 
To figure out how bats pull this trick off, Swartz teamed up with Brown University engineer Kenny Breuer. They analyzed the bats' landings. To do it, they used a high-speed video camera. They slowed down the bat's flight. They realized that the furry fliers manipulated their body's inertia by tucking in one wing and keeping the other extended. It shifted their center of gravity. That allowed them to flip around despite their weight.
 
"I would imagine that they use inertial forces for every aspect of their maneuvering," Breuer tells James Owen for National Geographic. "We don't have any direct evidence of this yet."
 
Birds can fly upside down and have lighter wings. But bats are more dexterous fliers. That is thanks to having many more joints and muscles in their wings. This allows them to pull off deft maneuvers using their own inertia very quickly. In Swartz and Breuer's experiment, it took the bats less than a second to flip upside down for their landings. It suggested that what they lack in aerodynamics, they make up for in mastering their own inertia, Akpan reports.
 
"It never would have occurred to me that aerodynamics would play such a small role in landing. I always think of flight as a primarily aerodynamic phenomenon. Wings are aerodynamic organs, and landing seems so obviously to be a flight behavior," Swartz tells Akpan. "Inertia can play an important role in flight dynamics, but the relative unimportance of aerodynamics is still quite astonishing."
 
Knowing how bats turn their body weight to their advantage doesn't just give scientists new insight into how they fly: it might also help engineers design new drones and small flying vehicles that can take advantage of shifting their mass in exchange for better control. But for now, Swartz and Breuer want to find out whether all bats use their inertia to help them control their landings.
 
"In Central America, there are some bats that roost head up thanks to suction disks on their wrists and ankles. They roost inside furled up leaves in tropical forests," Swartz tells Akpan. "They don't end up upside down. So how do they land? There's almost 1,400 species of bats, and we've just scratched the surface."

Filed Under:  
Assigned 142 times
CRITICAL THINKING QUESTION
Why are birds' bones hollow?
Write your answers in the comments section below


COMMENTS (40)
  • gmatthew-dav
    10/20/2016 - 09:29 p.m.

    The title of my article is this is how bats can land upside down. My opinion of the article is that it was very informative about how bats use inertia to land and maneuver. My first piece of evidence is that bats "direct their body's inertia by tucking in one wing and keeping the other extended." This is very informative about how bats use inertia to master aerobatic maneuvers. My second piece of evidence is "that they use inertial forces for every aspect of their maneuvering" Which means they use inertia to improve the bats normal flight envelope. My third and final piece of evidence is that "Inertia can play an important role in flight dynamics" meaning it can not only play a important role in bat flight but also the flight of unmanned aerial vehicles. In conclusion bats use inertia to execute daredevil maneuvers but this discovery can also be used to improve the flight of aircraft.

  • jahma-wim
    10/21/2016 - 11:29 a.m.

    I think that the way that bats hangup the ceiling is amazing. Animals are very interesting, but some are becoming endangered species.

  • wwall-wim
    10/21/2016 - 12:39 p.m.

    The bones on birds are hollow because they have to fly. If birds had normal bones, they wouldn't fly as well. It is way different from bats. Bats have to deal with their bones because they aren't hollow.

  • hailey1-fel
    10/27/2016 - 12:31 p.m.

    They are hollow so the wings on the bird are not heavy so they are able to fly easier

  • tytania1-fel
    10/27/2016 - 12:32 p.m.

    I really learned a lot from reading this article like how bats use their wings to their advantage for flying. Cool.

  • amanda1-fel
    10/27/2016 - 12:32 p.m.

    That's interesting how there are about 1,400 species of bats and yet they have just scratched the surface of information on these creatures.

  • christopher1-fel
    10/27/2016 - 12:33 p.m.

    I think that bats are pretty cool to learn about since they live in caves and hang up side down

  • bryan1-fel
    10/27/2016 - 12:35 p.m.

    Who ever did this did a great job and put a lot of heart into it.

  • nathan1-fel
    10/27/2016 - 12:36 p.m.

    I think it really neat how the bats can hang upsidedown for long periods of time.

  • gisela2-fel
    10/27/2016 - 12:39 p.m.

    Bird's bones are hollow because they need to be light weight so that their wings aren't so heavy.

Take the Quiz Leave a comment
ADVERTISEMENT