The science behind nature’s patterns
The science behind nature’s patterns A furled chameleon tail obviously takes its shape from the rolling of a tube, but its pattern is distinct from that created by rolling an even tube, such as that of a garden hose. The gentle taper of the tail produces a logarithmic spiral—one that gets smaller, yet the small parts look like the large parts. (Michal Filip Gmerek/
The science behind nature’s patterns
Lexile: 780L

Assign to Google Classroom

The curl of a chameleon's tail. The spiral of a pinecone's scales. And the ripples created by wind moving grains of sand. Each has the power to catch the eye and intrigue the mind. It was Charles Darwin who first proposed the theory of evolution by natural selection. This was in 1859.  It encouraged science enthusiasts to find reasons for natural patterns. The peacock's plumage and the spots of a shark must all serve some adaptive purpose, they eagerly guessed.
Yet one person saw all this as "runaway enthusiasm." So writes English scientist and writer Philip Ball. He has a new book. It's titled, "Patterns in Nature: Why the Natural World Looks the Way it Does." 

Scottish zoologist D'Arcy Wentworth Thompson was pushed to publish his own essay. And that was back in 1917. He explained that even nature's creativity is controlled by laws generated by physical and chemical forces. 

Thompson's ideas didn't clash with Darwin's theory. But they did point out that other factors were at play. Natural selection might explain the why of a tiger's stripes. The stripes likely are a strategy to blend in with shadows in grasslands and forest. It is similar to the way that chemicals diffuse through developing tissue can explain how pigment ends up in bands of dark and light. As well as why similar patterns can crop up on a sea anemone.
In "Patterns in Nature", Ball brings his own background as a physicist and chemist to bear. He has more than 20 years of experience as an editor. He has worked for the scientific journal Nature.
The vivid photographs in the book are vital, Ball explains. This is because some of the patterns can only be fully appreciated through repetition. "It's when you see several of them side by side in glorious detail that you start to get a sense of how nature takes a theme and runs with it," he says.
Yet he also offers enough detail to fascinate scientists and artists alike.
What exactly is a pattern?
I left it slightly unclear in the book. Because it feels like we know it when we see it. Traditionally, we think of patterns as something that just repeats again and again throughout space in an identical way. Sort of like a wallpaper pattern. But many patterns that we see in nature aren't quite like that. We sense that there is something regular or at least not random about them, but that doesn't mean that all the elements are the same. I think a very familiar example of that would be the zebra's stripes. Everyone can recognize that as a pattern, but no stripe is like any other stripe.
Why did you decide to write a book about natural patterns?
At first, it was a result of having been an editor at Nature. There, I started to see a lot of work come through the journal about this topic. What struck me was that it's a topic that doesn't have any kind of natural disciplinary boundaries.
But I think also it was the visuals. The patterns are just so striking. They are beautiful and remarkable.
Then, behind that aspect is a question. How does nature without any kind of blueprint or design put together patterns like this? When we make patterns, it is because we planned it that way. We are putting the elements into place. In nature, there is no planner. But somehow natural forces work together to bring about something that looks quite beautiful.
Do you have a favorite example of a pattern found in nature?
Perhaps one of the most familiar but really one of the most remarkable is the pattern of the snowflake. They all have the same theme. They have a six-fold, hexagonal symmetry. And yet there just seems to be endless variety within these snowflakes. It is such a simple process that goes into their formation. It is water vapor freezing out of humid air. There's nothing more to it than that. But somehow it creates this incredibly detailed, beautiful pattern.
Another system we find cropping up again and again in different places is a pattern that we call Turing structures. They are named after Alan Turing. He was very interested in how patterns form.
Turing came up with a theory. It was basically an explanation for how a whole bunch of chemicals that are just kind of floating around in space can interact as to create differences from one bit of space to the next. In this way, the seeds of a pattern will emerge.
Now, it seems that something like this might be responsible for the patterns that form upon animal skins. And some patterns we see in insects as well. We also see them in sand dunes and sand ripples forming after wind has blown sand.
You mention the fact that science and math hasn't fully explained some of these patterns yet. Can you give an example?
We've only really understood how snowflakes get these branched formations since the 1980s. This is even though people have studied and thought about that question for several hundred years. Yet even now it is a bit of a mystery why every arm of the snowflake can be pretty much the same.
New forms of patterns are being discovered almost as fast as we can find explanations. There are strange vegetation patterns in semi-arid regions of the world. Patches of vegetation are separated by patches of bare ground.
What do you hope readers will find in the book?
I remember when I was halfway through writing my first book. It was in 1999. I was on a beach in Wales. I suddenly realized that everywhere there were patterns. In the clouds and the sky, there were different patterns. There were wave patterns and so on in the sea.
You start to see patterns all around you. I hope that people will find this happening to them that they'll appreciate how much structure surrounding us is patterned.

Source URL:

Filed Under:  
Assigned 80 times
Why do we look for patterns to help us learn and understand?
Write your answers in the comments section below

  • darianv-3-bar
    6/02/2016 - 09:38 p.m.

    Patterns can help us learn and understand an animals habitat, weather, and so much more. " Natural selection might explain the why of a tiger's stripes. The stripes likely are a strategy to blend in with shadows in grasslands and forest. It is similar to the way that chemicals diffuse through developing tissue can explain how pigment ends up in bands of dark and light. As well as why similar patterns can crop up on a sea anemone." I like this article because it explains many things about our features as humans.

Take the Quiz Leave a comment