Beware the molasses! In this Jan. 15, 1919, file photo shows the damage caused by 2 1/2 million gallons of molasses that hurled trucks against buildings and crumpled houses in the North End of Boston. (AP Photo, File/AP Photo Bill Sikes)
Beware the molasses!
Lexile

The Great Molasses Flood happened in 1919. It was one of Boston's oddest disasters. It killed 21 people. It injured 150 others. And the flood flattened buildings. How could that happen? A giant storage tank burst.
 
Now Harvard University researchers think they know why the wave of sticky stuff claimed so many lives. A winter chill rapidly cooled the molasses. This was as it streamed through the streets. That complicated rescuers' efforts to free victims.
 
A team of experts recently studied the disaster. The group wanted to gain a better understanding of fluid dynamics. The conclusion was that cold temperatures quickly thickened the syrupy mess. It might have claimed few, if any, lives had it occurred in spring, summer or fall.
 
Team leader Nicole Sharp said she hopes the findings will shed new light "on the physics of a fascinating and surreal historical event." The data was presented at a conference of the American Physical Society.
 
"I'm originally from Arkansas, where we have an old expression: 'Slow as molasses in January,'" she said. "Oddly enough, that's exactly what we're dealing with here. Except that this molasses wasn't slow."
 
The disaster was on Jan. 15, 1919, shortly after 12:40 p.m. The huge tank in Boston's crowded North End buckled and gave way. It released more than 2.3 million gallons of molasses. It came down in a towering wave. Historical accounts show the molasses was initially 25 feet tall. That is nearly as high as a football goalpost.
 
Outrunning it was out of the question. Sharp says the sticky tsunami raced through the cobblestone streets at 35 miles per hour. The sheer weight of the goop propelled it.
 
It took only moments for the molasses to engulf the area around Commercial Street. This part of Boston was a bustling artery. It reduced buildings to rubble. It even damaged an elevated train.
 
Sharp's team combed through hundreds of pages of historical accounts. Researchers studied century-old maps. They also looked at archived National Weather Service meteorological data.
 
Harvard graduate student Jordan Kennedy analyzed the properties of blackstrap molasses and how it flows at different temperatures. The team found that molasses thickens dramatically when exposed to cold. At the time of the collapse, the stuff in the storage tank likely was much warmer than the wintry air outside.
 
Two days before the disaster, the tank had been topped off. A fresh shipment of molasses had arrived from the balmy Caribbean. But it had not cooled to Boston winter temperatures.
 
Once the tank split and the molasses gushed across the Boston waterfront, it cooled rapidly. That complicated attempts to rescue victims, the team said in its report.
 
Mapping the physics of the molasses flood could help experts better understand other catastrophes. These might include industrial spills or ruptured levees, Sharp said.
 
But mostly, she and the others hope it will pique students' interest in physics.

Filed Under:  
Assigned 48 times
CRITICAL THINKING QUESTION
How could molasses destroy a building?
Write your answers in the comments section below


COMMENTS (0)
Take the Quiz Leave a comment
ADVERTISEMENT