3D print your own breakfast A 3D printed dish made with the lab's printer. (Timothy Lee Photographers, Columbia University)
3D print your own breakfast
Lexile

Imagine coming down for breakfast. You don’t pop a piece of toast in the toaster. You don’t boil an egg. You stick a cartridge in a printer. A minute or two goes by. Then you’ve got a freshly printed banana. And you’ve got a muffin.

The printed breakfast is several steps closer to reality. This is for the average consumer.

"Food printing may be the 'killer app' of 3D printing." That's according to Hod Lipson. He's led the creation of the new printer. 

"It's completely uncharted territory." 

Lipson is a professor of mechanical engineering. He works at Columbia University. He has been studying 3D printing for nearly 20 years. He is working on printing things like plastics, metals, electronics and biomaterials. His work on 3D food printing came out of his research on printing complete 3D robots. In theory they could “walk off the printer.” 

What does it take to achieve something like this? A printer must be able to print with many materials. This must happen at the same time. Lipson experimented with making multi-material printers. He noticed the students in his lab were beginning to use food as a test material.

“They were using cookie dough, cheese and chocolate,” he says. “In the beginning, it was sort of a frivolous thing. But when people came to the lab and looked at it, they actually got really excited by the food printing.”

Lipson and his team began to take a more serious look at just what they could do with food. There are two basic approaches to 3D food printing. The first involves using powders. They are bound together. This happens during the printing process. It uses a liquid such as water. The second approach is extrusion-based. It uses syringes. They deposit gels or pastes in specific locations.

Lipson’s prototype involves an infrared cooking element. It cooks various parts of the printed product at specific times.

“We’ve used all kinds of materials, with different levels of success,” Lipson says. 

“Sometimes the materials are conventional. Cream cheese is something students like to work with a lot.”

They’ve also recently collaborated with a New York culinary school. They let chefs play around with the prototype.

“They kind of broke the machine by really pushing it to its limits,” Lipson says. 

“One thing we’ve learned is printing in cream cheese is very easy. But printing in polenta and beets is very hard. It has these granules in it. So from an engineering standpoint it’s much more challenging.”

It’s also difficult to predict how different foods will fare when combined. It’s easy enough to create recipes based on single items like chocolate. Those properties are well-established. But when you start to mix things together the mixtures may have much more complex behaviors. 

Another challenge is figuring out when to cook what during the printing process. If you’re printing a pyramid of salmon and mashed potatoes, the salmon and the potatoes will need very different cooking times and temperatures. The team is tackling this problem with software design.

The printer Lipson's team has made is not the only food printer to be developed in recent years. There are products like Hershey’s chocolate-printing CocoJet. The Magic Candy Factory has its 3D gummy printer. They are both for single-ingredients. This limits their use for the general public. Lipson’s printer is unique. It is able to handle many ingredients at once. And it can cook them as it goes.

Lipson sees the printer as having two main uses for consumers. First, it could be a specialty appliance. It would be a tool for cooking novel foods. These are foods difficult to achieve by any other process. You could print a complex pastry designed by someone in Japan. Or you could print a recipe you’d never have the expertise or equipment to make by hand. 

Lipson says he could imagine digital recipes going viral. 

The second use is about health and targeted nutrition. People are already increasingly interested in personal biometrics. This includes tracking their blood pressure. It includes tracking their pulse. It also includes tracking calorie burn and more. People use cell phones and computers to do this. 

In the future, it may be possible to track your own health. This could be done in much greater detail. This could include your blood sugar. It could include your calcium needs or your current vitamin D level. The printer could then respond to those details. It would print a customized meal. It could be produced from a cartridge of ingredients.

“Imagine a world where the breakfast that you eat has exactly what you need that day,”Lipson says. “Your muffin has, say, a little less sugar, a little more calcium.”

When might the printer be available to consumers? Lipson says it’s more a business challenge than a technology one.

“How do you get FDA approval? How do you sell the cartridges? Who owns the recipe? How do you make money off this?” 

“It’s a completely new way of thinking about food. It’s very radical.”

A recent redesign of the prototype may bring the product closer to being something the average consumer would accept. Previous versions of the printer were very high-tech. They were full of tubes and sticking-out nozzles. People had a hard time imagining it on their kitchen counters.

Then Drim Stokhuijzen completely redesigned the machine. He is an industrial designer. He gave it the sleek look of a high-end coffee maker.

“His design is so beautiful people are saying for the first time, ‘oh, I can see the appeal of food printing, this is something I might actually use,’” Lipson says.

Lipson doesn’t think 3D food printing will replace other cooking techniques. But he does think it will change the kitchen.

Filed Under:  
Assigned 179 times
CRITICAL THINKING QUESTION
If you could 3D print your breakfast, what would it be and why?
Write your answers in the comments section below


COMMENTS (8)
  • Peytond-dav1
    9/25/2017 - 10:51 a.m.

    In response to "3D print your own breakfast
    ," I disagree that you should 3D print your own food. One reason I disagree is that it says that some foods it might not be able to cook like beets. Another reason is that some foods that you put together might not taste good because of the flavors of the print. It says in the article . A third reason Another challenge is figuring out when to cook what during the printing process. I think this might be future technology for cooking it just might be better to keep our own ways of cooking.

  • De'asiar-dal
    9/26/2017 - 10:46 a.m.

    that looks nasty for my opinion.thanks a lot

  • OHMSS6ED
    11/02/2017 - 04:54 p.m.

    brito/nochoes/toko with a desrt of ice cream.

  • OHMSS25JT
    11/02/2017 - 05:04 p.m.

    If I could print my own breakfast of a peace of toast some fruit and a egg. why I would print this meal is because it is my favorite breakfast.

  • OHMSS25JT
    11/02/2017 - 05:07 p.m.

    If I could print my own breakfast it would be toast some fruit and a egg. Why I would print this breakfast is because it is my favorite.

Take the Quiz Leave a comment
ADVERTISEMENT